More
    HomeUncategorizedMENGENAL BANGUN RUANG : LIMAS DAN PRISMA

    MENGENAL BANGUN RUANG : LIMAS DAN PRISMA

    Published on

    spot_img

     Mengenal Bangun Ruang: Limas dan Prisma

     

    ✨ Pengantar

    Bangun ruang adalah bentuk geometri tiga dimensi yang memiliki volume. Dua di antaranya yang sering dipelajari di tingkat SMP adalah limas dan prisma. Kedua bangun ini termasuk dalam bangun ruang sisi datar, karena sisi-sisinya berbentuk bangun datar.

     

    📐 A. Prisma

    🔍 Pengertian

    Prisma adalah bangun ruang yang memiliki dua bidang alas yang kongruen dan sejajar, serta sisi-sisi tegaknya berupa persegi panjang.

     

    ✅ Ciri-Ciri Prisma:

    Memiliki dua bidang alas yang berbentuk dan berukuran sama.

    Sisi tegaknya berupa persegi panjang.

    Jumlah sisi tegak tergantung pada bentuk alasnya.

     

    🔢 Rumus Prisma:

    Volume (V):

    𝑉

    =

    Luas Alas

    ×

    Tinggi Prisma

    V=Luas Alas×Tinggi Prisma

    Luas Permukaan (LP):

    𝐿

    𝑃

    =

    2

    ×

    Luas Alas

    +

    Keliling Alas

    ×

    Tinggi

    LP=2×Luas Alas+Keliling Alas×Tinggi

    📐 B. Limas

    🔍 Pengertian

     

    Limas adalah bangun ruang yang memiliki satu bidang alas berbentuk segibanyak, dan sisi-sisi lainnya berupa segitiga yang bertemu pada satu titik puncak.

     

    ✅ Ciri-Ciri Limas:

    Alas berbentuk segibanyak (segitiga, segiempat, dll).

    Sisi tegaknya berupa segitiga.

    Semua sisi tegak bertemu di satu titik (puncak).

     

    🔢 Rumus Limas:

    Volume (V):

    𝑉

    =

    1

    3

    ×

    Luas Alas

    ×

    Tinggi

    V=

    3

    1

    ×Luas Alas×Tinggi

    Luas Permukaan (LP):

    𝐿

    𝑃

    =

    Luas Alas

    +

    Jumlah Luas Sisi Tegak

    LP=Luas Alas+Jumlah Luas Sisi Tegak

    ✍️ Contoh Soal Prisma dan Limas (Bisa Disalin)

    Contoh 1: Prisma

     

    Soal:

    Sebuah prisma tegak memiliki alas berbentuk segitiga siku-siku dengan panjang alas 6 cm dan tinggi 8 cm. Jika tinggi prisma adalah 10 cm, hitunglah:

     

    a. Volume prisma

    b. Luas permukaan prisma (asumsikan sisi tegak berupa persegi panjang)

     

    Penyelesaian:

    a. Luas alas = ½ × 6 × 8 = 24 cm²

    Volume = 24 × 10 = 240 cm³

     

    b. Keliling alas = 6 + 8 + 10 = 24 cm (gunakan teorema Pythagoras: √(6² + 8²) = 10)

    Luas permukaan = 2 × 24 + 24 × 10 = 48 + 240 = 288 cm²

     

    Contoh 2: Limas

    Soal:

    Diketahui sebuah limas beralas persegi dengan panjang sisi alas 10 cm dan tinggi limas 12 cm. Hitunglah:

     

    a. Volume limas

    b. Jika semua sisi tegak berbentuk segitiga sama kaki dengan tinggi 13 cm, hitunglah luas permukaan limas.

     

    Penyelesaian:

    a. Luas alas = 10 × 10 = 100 cm²

    Volume = ⅓ × 100 × 12 = 400 cm³

     

    b. Luas satu sisi tegak = ½ × 10 × 13 = 65 cm²

    Jumlah sisi tegak = 4 × 65 = 260 cm²

    Luas permukaan = 100 + 260 = 360 cm²

     

    📚 Referensi Sumber

    📖 Buku Sekolah Elektronik (BSE)

    Judul: Matematika SMP Kelas VIII

    Penerbit: Kementerian Pendidikan dan Kebudayaan

    Kurikulum: Kurikulum 2013 Revisi 2018

    Materi Terkait:

    Prisma: Halaman 238–240

    Limas: Halaman 243–245

    Contoh Soal dan Latihan: Halaman 247–249

    Latest articles

    Menentukan Bilangan yang Hilang di Antara Dua Angka

    Menentukan Bilangan yang Hilang di Antara Dua Angka Dalam kehidupan sehari-hari, kita sering menemukan urutan...

    Membuat Cerita Matematika dari Kehidupan Sehari-hari

    Membuat Cerita Matematika dari Kehidupan Sehari-hari Matematika tidak hanya ada di buku pelajaran, tetapi juga...

    Mengurutkan Bilangan Mundur

    Mengurutkan Bilangan Mundur Mengurutkan bilangan mundur adalah kegiatan menyusun angka dari yang terbesar ke yang...

    Mengenal Arah Kiri dan Kanan

    Mengenal Arah Kiri dan Kanan Dalam kehidupan sehari-hari, kita sering menggunakan arah untuk menunjukkan posisi...

    More like this

    Menentukan Bilangan yang Hilang di Antara Dua Angka

    Menentukan Bilangan yang Hilang di Antara Dua Angka Dalam kehidupan sehari-hari, kita sering menemukan urutan...

    Membuat Cerita Matematika dari Kehidupan Sehari-hari

    Membuat Cerita Matematika dari Kehidupan Sehari-hari Matematika tidak hanya ada di buku pelajaran, tetapi juga...

    Mengurutkan Bilangan Mundur

    Mengurutkan Bilangan Mundur Mengurutkan bilangan mundur adalah kegiatan menyusun angka dari yang terbesar ke yang...